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A grid algorithm is proposed for constructing the optimal guaranteed result function (which need not
be differentiable) in control problems. Wherever it is differentiable, this function satisfies the Isaacs—
Bellman equation, which is a first-order partial differential equation of Hamilton-Jacobi type. A
convergent finite-difference method is proposed for Hamilton-Jacobi equations. Unlike the classical
grid method, in which one approximates the gradients of the unknown function, which need not
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Underlying the method is the concept of a generalized minimax (viscosity) solution [1-4] of the
Hamilton-Jacobi equation, with the corresponding infinitesimal constructions—directional differen-
tials and subdifferentials—replacing the classical derivative.

Generalized solutions of Hamilton-Jacobi equations and their numerical computation
attracted considerable attention at the beginning of the 1960s [5-10]. When a general theory of
generalized solutions emerged in the early 1980s [1-4], attention again turned to numerical
methods. Various approximation operators (AQOs) were examined [4, 11-15] within the context
of the theory of viscosity solutions [3]. Various workers have proposed a general scheme for
proving the convergence of approximation schemes (ASs) and for obtaining convergence
estimates [4, 13]. Explicit schemes with AOs of the Lax-Friedrichs type have also been
considered [4], and an implicit AS has been investigated in detail [13]. Another topic
investigated is “essentially non-oscillatory” ASs with operators of Godunov and Lax-
Friedrichs type, using local approximations of higher than first order (where the latter
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consideration has been given to “maxmin” and “minmax” operators, and cases have been
discovered in which these relations yield an exact formula for the viscosity solution of the
Riemann problem.

The AOs proposed in this paper differ from the algorithms mentioned. Obtained in the
theory of optimal guaranteed control (differential games) developed by Krasovskii and his
school, these operators are based on the results of [14—19]. Underlying the operators are
noiions from convex and non-smooih analysis {20-22]: locally convex hulis of ihe funciion
being approximated and subdifferentials of such hulls. The AOs may also be obtained by
double constructions in terms of subdifferentials of locally concave hulls. These notions are
connected in a natural relation to Dem’ yanov’s subdlfferentials and superdifferentials [20],
which may be used to obtain a universal AO.

It will be shown below that our AOs satisfy certain sufficient conditions [13] for the

convergence of the corresponding ASs. However, they differ from the operators of [4, 11-13]
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in one fundamental respect: they may be defined outside the elementary “rhombus” of phase
space. Therefore, they do not rigidly connect the time-approximation steps with the
approximation steps in phase space. In what follows we shall also compare our AOs with those
of [4, 11-13].

1. THE OPTIMAL GUARANTEED RESULT FUNCTION

We consider a control system whose dynamics over a time interval T =[t,, 9] is described by
a vector differential equation

x= f(t,x,u,v)= h(t, x)+ B(t, x)u+ C(t,x)0 (1.1)

1€R", uePcR’, veQckK

where x is the n-dimensional phase vector of the system, u is the control and v is the noise
vector. The sets P and Q are convex and compact. The function f{t, x, u, v) on the right-hand
side of system (1.1) is assumed to satisfy the following conditions.

(f1) Joint continuity in all variables.
(f2) The Lipschitz condition with respect to the variable x

Hf(t, x,u,0)~ (2, x5, u, VIS L (D)ilx; — x,ll

for all (z, x,)e D, (t,x,)€ D, ueP, veQ.
(f3) Continuability of solutions: a constant k> 0 exists such that

(e, x,u, oS 1+ xl)

for all (t,x,u, V) eTxR"xPxQ.
(f4) The Lipschitz condition with respect to the variable ¢

W F (2 8,0) = (5, %, u, OIS Ly (DIt — o)1

forall (t,, x)e D, (t,, x)e D, ueP, veQ, where D is a compactset, DcTxR".

The control problem considered here is to guarantee minimization of the functional

Y(x(9)) = G(x(D)) 12)

on the trajectories x(-) of system (1.1), i.e. to find a positional control U°=U°(t, x) that will
provide an external minimum in the relation

W(ts,x,)=min  max  (x(9)) (1.3)
U x(e)eX(te,xe,U)
and accordingly to determine the number w(tx, xx), called the optimal guaranteed result. Here
X(t+, xx, U) is the set of trajectories of system (1.1) that leave the initial position (t+, x+) and
correspond to the positional control U =U(t, x) [15].
It is assumed that the function 6:R" — R in the functional (1.2) is Lipschitz continuous

16(x,) - 6(x NS Ly (D%, — X, 1l

for all x, € D, x, € D, where D is a compact set DcR".
The function that assigns to each position (t+, x+«)€T xR" an optimal guaranteed result
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w(tx, xx) is called the optimal guaranteed result function or utility function.

It is well known that the utility function w(t, x) is Lipschitz continuous and is consequently
differentiable almost everywhere; at its points of differentiability it satisfies the Isaacs-Bellman
equation, which is a Hamilton-Jacobi type equation

ow/ot+ H(t,x,ow/0dx)=0 1.4

It also satisfies the boundary condition

w(d, x) = o(x) (1.5)
where
H(t, x,5)={s,h(t,x)) + min{s, B(t, x)u) + max{s, C(z, x)v) (1.6)
ueP usd

is the Hamiltonian of the control system (1.1).

Solutions of problem (1.4), (1.5) have been rigorously defined, and existence and uniqueness
theorems have been proved in the theory of minimax (viscosity) solutions of Hamilton-Jacobi
equations [1-4, 16]. One of these definitions [16] follows.

Definition 1. A Lipschitz continuous function w(z, x) is called a minimax solution of problem
(1.4), (1.5) if the following inequalities hold for all (¢, x)€[t,, O)xR"

inf sup ({s,h) - o_w(t, )N, k)~ H(t,x,5))20 a.7n
seR" heR"

sup inf ({s,h) -, w(t, x)I(L,h)~ H(t,x,5))<0 (1.8)
seR” heR"

as well as the boundary condition w(¥9, x)=0(x), x € R". Here we have used the notation

3_w(t, (L, k) = ligriinfﬁ_l (w(t+8,x + 5k — w(t,x))
0

3, w(s, (1, h) = limsup 87 (w(t +8, x +8h) — w(t, X))
0

for the lower and upper derivatives, respectively, of w at the point (¢, x) in the direction (1, A).
At points where the function is differentiable, inequalities (1.7) and (1.8) become the
Hamilton-Jacobi equation (1.4), so they may be regarded as a generalization of that equation.
The finite-difference scheme proposed below for the Hamilton-Jacobi equation is convergent
and the limit is the utility function, i.e. a function satisfying inequalities (1.7) and (1.8).
Equation (1.4) will be considered in a certain compact domain G, cTxR", r>0, defined as
follows.
Let X(t+, xx) be the set of all solutions x(r) of the differential inclusion

x(t)e F(t,x(1)), telt., 9], x(t.)=x. 1.9

where F(1, y)=co[f €R": f = f(z, y,u,v), ueP, ve}, (1, y)eTxR" is the convex hull of the
right-hand side of system (1.1).
Let G be a closed set satisfying the following strong invariance condition

(G1) If (t+, x+)e G, then (¢, x(t)) G for all x(t)e X(t+, xx), t €[tx, D).

By condition (f3) compact domains G exist satisfying this condition.,
Let



210 A. M. Taras’yev

K= max W, x,u, oMl
(#,x,u,0)eGXPXQ

be the maximum velocity of system (1.1) in region G.
Obviously

K £ max x(I+ixil)
(t,x)eG

Suppose the number r defining the domain G, is such that r > K. Note that for any (¢, x)eG
we have H(t, x) c B, (B, denotes the sphere {be R": 1l bll<r)).
We will define G, by two conditions:

(G2 G. cG.
(G3) If (tx, xx)€G,, then (t, x++(1—1%)B,) G, forall t € {tx, ).

It follows from conditions (f1)~(f4) and relation (1.6) that the Hamiltonian H (t, x, s):
G, X R" — R satisfies the following conditions:

(H1) Uniform continuity jointly in all variables.
(H2) The Lipschitz condition with respect to the variable x

VH(t, x,,8)— H(t, x5, S L (Gl Hxy = x5l

forall (¢, x,)eG,, (¢, x,)€G,, seR".
(H3) The Lipschitz condition with respect to the variable s

1H(t,x,8,)— H(t, x,5; 1S Klls; = s5,li< rls; = 5,1l

forall (¢, x)eG,, s,eR", s,eR".
(H4) The Lipschitz condition with respect to the variable ¢

|H(t,,x,8)— H(ty, x,5)IS L, (G )lisll [11; - 1,1

forall (¢, x)eG,, (t,, x)€G,, seR".
(HS5) Positive homogeneity with respect to the variable s

H(t, x, As)=AH(t, x,s) for all (¢, x, s)e G, xR", A=0.

2. APPROXIMATION OPERATOR FOR HAMILTON-JACOBI EQUATIONS

Let teT, t+A€T, t<9, A>0, (t, x)eG.. Let us assume that at a time ¢+A a function u(-)
is required which satisfies a Lipschitz condition in the domain D,, ={xeR":(t+4, x)eG,,
t+A e T} with constant L =L(D,,,). This function will be used in the subsequent constructions
as an approximation of the solution w(t+A, -). We define an operator u— F(t, A, w)
approximating the Hamilton-Jacobi equation in the neighbourhood of a point (7, x)€G, by a
formula that can be interpreted as a generalization of Hopf’s formula [9, 11] or of the
programmed maximin formula [15, 17] to locally convex hulls

v(x)=F(t,Au)(x)= f(x)+ sup max {AH(t,x,5)+ f(y)- f(x)-(s.y-x)} 21)
yeO(x,rd) se Df (y)

Here the function v: D, — R is treated as an approximation of the solution w(¢, -) in the
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domain D,={seR":(t, x)€G,, teT}.
The set O(x, rA) is a neighbourhood of x of radius rA, r>K, A>0, (1, x)eG,, ie.

O(x,rA)={ye R": liy - xli<rA}

the function f(y): O(x, rA)— R is the locally convex hull of the function u(y) in the closed
neighbourhood O(x, rA) of x of radius rA

¢! -
f(y)-.:inf{”i au(y): Yy €O(xrA), 0, 20, k=1,..,n+1

k=1
n+l n+l —

T oy =y X 0=l yeO(xrh) 2.2)
k=1 k=1

O(x,rA)={y e R": ily - xli< rA}
The set Df(y) is the subdifferential [21, 22] of the convex function f at a point y, y e O(x, rA)
Df(y)={seR": f(2)-f(y)2(s.z-y), 2€0(x,rA)) 23
Note that in formula (2.1)
FO)-f(x)={s,y-x}<0, yeO(x,rA), seDf(y)

We now consider the properties of locally convex hulls and subdifferentials.t

Lemma 1. _
1. The function f: O(x, rA) — R satisfies the following limit

_ rAHly-xit),
1f(D) f(y)*SL(i+ré_ﬁy~xﬁ Hz-yli

for all zeO(x, rA), y € O(x, rA). In particular, when y=x the following inequality is true
1f(2)~ FONS 2 LIz - it
for all zeO{(x, rA). _
2. The function f: O(x, KA)-—» R, K<r satisfies the Lipschitz condition with constant

LQ+(r+K)/(r-K)).
3. For any subgradient s e Df(y), yeO(x, rA)

L +{r+ KX r-K)).

st 1] 14 Ay -2l
rA-lly—xl

For the proofs of all these assertions, see TARAS'YEV A. M., Approximation schemes for constructing solutions of
the basic equation of the theory of control and differential games. Ekateringburg, 1992. Deposited at VINITI 31.07.92,
No. 2543-B92.

In particular
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si<s2L, seDf(x)

lIsli< L(l +’—+—’-‘—), seDf(y), yeO(x KA)

The following example shows that the condition r>K is essential. Let wu=u(y)=u(y,
yz)——ly2 y=(n y)€R:, x=(0,0), A=1, r=K=1, i.e. O(x, rA)=0(x, KA)={yeR*:
O+ yz)"2<1} Clearly, f(y)=-(1-y))"?, and so df/dy, = y,(1- y})™"'*. The partial derivative
df / dy, increases without limit in absolute value as |y, |- 1. Consequently, the function f(y)=

—(1-y?)"? is not Lipschitz continuous in the neighbourhood O(x, KA).

Lemma 2. Suppose that the function &(y): O(x, rA)— R is convex and Lipschitz continuous,
and moreover

E)>E(o) yeO(x, KA\ {yo), yo €d0(x KA)
00 (x,KA)={y e O(x,KA): lly-xll= KA}, r>K

Then a sequence {y,,}, y,,, € O(x, KA), lim,,_ y, = y,, asequence {I.}, I, € DE(y,) and a vector
I, e DE(y,) < R”, lim,,_,_1, =1, exist such that for all ye O(x, KA)

E-&(y0) 2(lp,y—¥0) 20

Using Lemmas 1 and 2, one can prove the following properties of the operator F.

Property 1. The value w(x)=F(t, A, u)(x) is well defined for all functions u: R* — R which
satisfy the Lipschitz condition, where (¢, x)eG,, teT, A>0, t+AeT. One then has the
following limits

i -2LKA S F(t,A, <
yeggr'lm)u(y) SF(t,A,u)x) yegg'xmu(y)

Property 2. The operator F satisfies the following equalities

F(t,A,u)(x)=f(x)+ sup max (AH(t,x,5)+ f(y)- f(x)—(s,y—-x})}=
yeO(x,rd) se Df (y)

=f(x)+ sup max {AH(t,x,5)+ f(y)~ f(x)~(s,y-x)}=
yeO(x,KA) seDf (y)

=f(x)+ max max {AH(t,x,5)+ f(y)~ f(x)~{s,y - x)}
yeO (x,KA) seDf (y)

Thus the supremum in the operator F over the set O(x, rA) is the same as over the set O(x,
KA), r> K, and is achieved on the set O(x, KA).

3. PROPERTIES OF THE OPERATOR F AND GENERAL CONDITIONS FOR
THE CONVERGENCE OF APPROXIMATION SCHEMES FOR
HAMILTON-JACOBI EQUATIONS

We will now consider some properties of the operator. F defined by formula (2.1), which may
be related to the sufficient conditions of [4, 13] for the convergence of ASs. The operator F
satisfies the series of sufficient conditions presented there. Therefore the explicit AS with the
finite-difference operator (2.1) converges, with a convergence error estimate of the order of

Al/Z
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Theorem 1. The operator u— F(t, A, u) defined by formula (2.1) satisfies the following
conditions.

(F1) For all xe D,
F(1, 0, u)(x) = u(x)

(F2) The mapping (¢, A) - F(t, A, u) is continuous. In fact

LF(ty, Ay, u)(X) ~ F(ty, Ay, u)(X)NS 2L(r + K)A, - A1+

r+K

+L(l+ )KIA1 —A,1+L, (G, )max{A;, A )it —1,1)

r—
(F3) For all points x € D, and numbers ae R
F(t,A,u+a)x)=F(@t,Au)x)+a
(F4) A constant C, =0 exists such that, for all points x € D,
1F(t, A, u)(x) - u(x)IS C,
where we may put C, =(r+2K)LA.

(Fs) If u,(x)=u,(x) for all xe D,,,, then F(1, A, u)(x)=F(t, A, u,)(x) for all xe D,.
(F6) A constant C,=0 exists such that

IF(, A,u)IID! < exp(CzA)(llulll,’+A +C,A)
HF(t, A, = LA, , =
HF(@, A u)llD' 2aDJ'ch(t A u)(x) llull,,wA JrrEan;i(AIu(x)!)

By condition (HS) we can put C, =0.
(F7) A constant C, exists such that for all x, e D,, x, €D,

LE(t, A, u)(x,) - F(1, A,u)(x, IS exp(C,A) L x, — x,

(C3 =11(G,)(1+:§)]

(F8) A parameter C, exists such that for all twice differentiable functions ¢:D,,, — R and
points xeD,cD,,,

|F(z,A,0)(x) - 9(x)

—H(t,x, V(p)(x))l <CA

(c,, = (rz +2Kr(2 +’—+—K))|az(pu)
r-K

where Vo(x) is the gradient of ¢ at a point xe D, and lId%ll is the norm of the second
derivative of ¢, i.e.

a’pli=3 113%¢/ ax,x;ll, H3*/ axdx;ll= max 13%(y)/ ox,3x;!

ij yeDy, 5
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Lj=1,.,n

The next assertion follows from Theorem 1 and the results of [4, 13}, where it was proved
that an AS with an operator satisfying conditions (F1)~(F8) is convergent.

Theorem 2. Let w be a generalized solution of problem (1.4), (1.5) in the domain G.. For a
partition I'={,<t,< . .. <ty =90} of the interval T with constant mesh size A=t -t
(i=0,..., N-1), define an AS with the operator F of (2.1)

up(9,x)=0(x), xeD,
up(t,x)= Ft, 1, - t,up (8, 9))x) (3.1)
telt, ), xeD, i=0,.,N-1

!

Then the AS (3.1) converges to a generalized solution w of problem (1.4), (1.5). Moreover, a
constant C exists such that, for sufficiently small A,

llup = wilg, < CA% 32)

(Hup - wffgr = max fup(t,x)—wi(t,x})

t,.x}eG,

4. AN APPROXIMATION OPERATOR ON A GRID

Let us consider the possibility of approximating the operator F(z, 4, u) by an operator F*(s,
A, u) whose value is a piecewise-linear function, the vertices of whose graph lie at the points of
a fixed grid.

Let (1, x)€G,, i,=v4>0 (i=1,..., n). The set of points {y=x,+Z(mhe + ... +m,he,)}
such that (t, y)eG,(m =0, £1,+2,..., i=1,..., n) is called a grid; we shall denote it by
GR(71). Here ¢, (i=1, ..., n) are basis vectors in R". Let D} be the convex hull of the grid
GR(7)

* d . n
D ={yeR": y=% a;y;, y;€GR(1), @;20, j=0,.,n ¥ a;=1}
j=0 j=0

We shall assume that te7, t+AeT and u: D* - R is a function which satisfies the Lipschitz
condition. Let Q be some fixed partition of the n-cube into simplexes.
Define the value of the operator F*{t, A, u)}(y): D¥ — R ata point ye D¥ by

F 6, Au)0)= 3 0F (AU,
=0

» u
yeD;, y;€GR(®), @;20, j=0...n X @&;=1 y= Zoﬁ;?;
j=0 J=

Yo = Xp + X (mhe+...+mh e, )
¥; = Yo+ Lliey+..thihue) j=loom k=0, 1

The coefficients o, =0,(Q) and points y,=y,(Q)(j=0, . . ., n), both here and below, are
uniquely defined by the partition Q.

Theorem 3. The operator F(t, A, u) satisfies conditions (F1)-(F8) with parameters
C; =(r+2K+Vnmax{y;DLA, C;=C,=0
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r-K

Ci=c,= L,(G,)(H ’+KJ
C; = Cy +(nmax{y; }+ VnK max{7, M 3*@li+vnL,(G,) max{y; I Vel

Theorem 4. Let w be a generalized solution of problem (1.4), (1.5) in the domain G,. For
a partition I'={f,<t,< ... <fy="0} of the interval T with constant mesh size A=z, -1,
@i=0,..., N-1), define an AS with operator F*

. . n * L
up(9,)=0 ()= X 0;0(y;), yeDy, y=3 a;y;
j=0 j=0

n
T o;=1, o;=0,(@)20, y;=y,(R)eCR®), j=0,..n
j=0

u;(t,x)=F‘(l,t,-+1 _t’ u]:(ti+]9.))(x) (4'1)
telt,t,,), xeD,, i=0,.,N-1

Then the AS (4.1) converges to a generalized solution w of problem (1.4), (1.5). Moreover, a
constant C* exists such that, for sufficiently small A

lu - wil o < C* 4% 42)

where

»
Wiy —wil o= max lup(t,x)—w(t, )l
r  (t,x)eG,

G:={(t,x)eG,: teT, xeD:}

C" =2((C) Y +2L, Ly +(L,)" )+ (L (G,)+ Ly(G))1+ L, )1+ 2(8 ~t5)L, ) +
+2(8 —5)Cy (1+18R) +6(8 —15)R

Ly =Ly(Dy), L, =Ly exp(L(G, )~ 1y))

Cl S(r+2K)L, L=Lyexp(C;(9-1y))

R=R+1, R=lioll , +Cy (9 —15), llall . = maxlo(x)
L

. =
Do XEDO

5. ALGORITHMS FOR COMPUTING VALUES OF THE OPERATOR F

Different types of operators. We will point out some further properties of the operator F. We
first introduce some notation. Let

F(t,A,r,u)(x)=f(r,x)+ max  max {AH(1,x5)+
yeO(x,KA)seDf(r;,y)

+f(’;”y)_f(’;"x)—<s’y—x)}v i=lv2
F(t,A,S,u)(£)= f(S,x)+ max max {AH(t,x,5)+ f(S,y)~ f(S,x)-(s,y — x)}
ye0(x,KA)seDf(S,y)

where r,>r > K, theset S=S(x, r, r, A) is a convex polyhedron such that

O(x,7,A)c S(x,5,1y,A) C O(x,1,A)

and the functions f(r, -) and f(S, -) are the convex hulls of u(-) over the sets O(x, rA)(i=1, 2)



216 A.M, Taras'yev

and S(x, 1, n,, A), respectively.
Property 3.

F(t,A,n,u)X(x)2 F(t,A,S,u)(x)2 F(t,A,n,uX(x), xe€D,

Remark 1. By property 3, ASs (3.1) and (4.1) with an operator F=F(1, A, §, u) are convergent, since
that is the case for ASs (3.1) and (4.1) with operators F=F(¢, A, r, u) (i=1, 2). The convergence error
estimate is of the order of A¥Z.

A special feature of this approximation operator F is the appearance in formula (2.1) of a
mathematical programming problem. If the function f in (2.1) is piecewise-linear and the
Hamiltonian H(t, x, s) is piecewise-linear and positively homogeneous as a function of the
impulse variable s, the mathematical programming problem may be reduced to the solution of
a series of linear programming problems.

Indeed, suppose that w is piecewise-linear. Then the convex hull f{)= (S, -) of u over the convex
polyhedron S(x, r, n, A) is also piecewise-linear. In particular, in the neighbourhood O(x, KA) we can
write fas

FO)=maxmax({l,y-y;)+f;) j=hesNp m=1.N;
j =n

where the points y, and the vectors /] satisfy the following condition: an i, € J(y), exists such that for
all ielJ(y)

coL(y,iygcoL(y.ip), yeO(x,KA)

Iy ={i: m?xm:\x«fi =3+ FO) = max(Cl,y - y)+ FO)

Liyiy={l=1: max({ly,y-y)+f(y)= Uy=y)+ O i€J()

The subdifferential DRy) of fat y e O(x, KA) is defined by
Df (y)=coL(yip)

If the relation i, =i,(y,)=j holds at the points y,, j=1,..., N,, then the subdifferential Df{(y,} of fat
the point y, € O(x, KA) is the convex polyhedron defined by the formula

Df(yj)=cofl], n=1,..N;}, j=L...N

We may assume without loss of generality that the Hamiltonian H(¢,x,s) is piecewise-linear and
positively homogeneous as a function of s. In particular, H(t, x, s) will satisfy these conditions if the
control system is linear in the control variables and the constraints on the controls are polyhedra. In that
case

H(t,x,s)={s,h(t,x))+ mig(s,B(t,x)u) + mag(s, C(t,x)v)
e VE!

where P and Q are convex polyhedra. é
Let u, be the vertices of the polyhedron B(z, x)P and let I be the cones of linearity of the function

s~»min, {5, B(s, x), ie.

LZ%L"(t,x):{seR": (s,u-u; )20, ueB(x)P}, k=1..N,

Similarly, let v, be the vertices of the polyhedron C(t, x}Q and L, the cones of linearity of the
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function s — max, (s, C(1, x)v), ie.

Ly =L (t,x)={seR": (5,0-0,)<0, veC(tx)Q}, m=1..,N,

Property 4. If u is piecewise-linear and the Hamiltonian H is piecewise-linear and positively
homogeneous as a function of s, then F may be computed from the formula

F=F(1,A,5,u)(x)= f(x)+max max max max{A((s, h(t, x)) + (s, ) +
J m 5

-
-’
i
-~
in
<
{
in
S
——
~~

wn
ek
N

S€Ljp n(t.2)=Df()NL N Ly,

In this formula the set L, (z, x) is a convex polyhedron, while the function being maximized
is linear in s. Thus, calculation of the value F(1, A, u)(x) of the operator F at a point x reduces
to a series of linear programming problems.

Remark 2. Consider the finite-difference operator G dual to the F of (2.1)
G(t,Au)(x)=g(x)+ inf  min {AH(1,x,5)+8(y)-g(x)~{s,y-x)} 5.2)
yeO(x,rA)seDg(y)
teT, i+AeT, t<9, A>0, (1,x)€G,, r>K
where g(y): O(x, rA)— R is the locally concave hull of u(y) in the closed neighbourhood Of(x,
rA) of x of radius rA

{m+1

g(y)=supi X au(y, ) y ea(x,rA), 0, 20, k=1,..,n+1
k=1

n+l n+l —
Loy, =y X op=1} yeO(xrd)
k=1 k=1

and the set Dg(y) is the superdifferential of the concave function g at a point y, y e O(x, rA)

Dg(y)={seR": g(2)-g(y)<{s,2~y), z€0(x,rA))

Remark 3. It can be shown that G satisfies conditions (F1)-(F8). Consequently, the AS (3.1) and (4.1)
with operator G is convergent, with convergence error estimate of the order of A2,

Remark 4. The operator (G possesses properties 1-4.
Remark 5. The following inequality holds

G, A,u)(x)2 F(t,A,u)x), xeD,

Remark 6. Let a,(x), a,(x) be such that o,(x)=(0) (i=1, 2) and a,(x)+0,(x)=1. Then the operator

E(t,Au)(x)= o (X)F(,A,u)(x)+ 0ty (x)G(1,A,u)x)

F(t,A,u)(x) S E(t,A,u)(x) < G(t,A,u)(x), xe€D, (5.3)

The AS (3.1) and (4.1) with the operator E converges, with error estimate of the order of A, for any
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(not necessarily continuous) weighting functions x — a,(x), x — a,(x).

Remark 7. Let ¥, be numbers such that

n 2 *yz
K<(2 YZ) e (54)

i=1

(in particular, if y,=y (i=1, ...,n) this means that KN(n<y)). Define

-
n
rn=[>: 7{2) . m=maxy i=l..n
1

i=1

S(x,7,n,A)=colxtAY,e;, i=1,...n}

uy)= 3 au(y;)s yES(x.5,n,4) (5.5)
i=0

Yo=x, yi=xtAye, i=l...n

n n
aj20, j=0,..,n, Z(Xj=], y=20}y}
j=0 j=0

The function f is then piecewise-linear and defined in the elementary “rhombus” S=S(x, r, r, A) by
the relations

f(xtAYe;)=u(xtAyie;), i=1,..n
f(x)=min{u(x), min{};(u(x+AY,¢;)+u(x~Ay;e;)})

n

f(y)= Z a]f(yj)v )’ES(x,r‘,rz,A)
j=0

Yo=X y;=xtAye, i=l...n

n n
a]-ZO, j=0,....n, zaj=l, y::zajyj
j=0 j=0

The subdifferential Df(x) of f at the point x is a rectangular parallelepiped with faces parallel to the
coordinate axes
Df(x)=cola,: k=1,..,2"}

i n
ay =(ay,....a;)

g} =H(f(xtAYe) - fOONAY) s i=ln

The operator F is computed by the formula

F=F(1,A,S,u)(x)=f(x)+A max H(t,x,5)=

seDf(x)

= f(x)+ Amax max max{(s,h(¢t, X)) +{s,u; ) +{s,0,,)) (5.6
k m s

sely (4,0)=Df ()N Ly N Ly, Ly =Li(t,x), Ly=Ly(1x)

Remark 8. Assume that condition (5.4) holds. Then
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G=G(L,A,Su)(x)=g(x)+A min H(ix,5)=

seDg(x)

= g(x)+ Aminminmin{(s,h(z, x)} +{s,u; ) +{5,9,,)} 6.7
E m

S€Ly n(tx)=Dg(IN Ly ALy, Li=Li(hx), Ly= L %)

g(XiAY,'ei)= u(xiA’yiei), i=l,...n
g(x)=max{u(x), max{}(u(x+A4ye;)+u(x~Ay,e;)}}

Dg(x)=colb;: k=1,...,2")
bk =(.D;,--.gb:)
bj = t(g(x £ Ay,e,) - g(0))(AY,) ™, i=1,..n

Remark 9. Assume that condition (5.4) holds and let f{x) < g(x) in (5.6), (5.7). Define

(x)~u(x) u(x x
o {x)= g ) (x) (0= f(x) (5.8)
g(x)-f(x) glx)—f(x)
In that case
E=E(1,A,S,u)(x) =0 (x)F(t,A,S,u)(x)+ 0, (x)G(1,4,5,u)(x) =
=u(x)+A{0;{x) max H{i,x,s)+0y(x) min H{i,x,5))=
seDf(x) seDg(x)
5.9)
AY 7

N
=u(x)+Al max H(t,x,s)+ min H(t,x,s)J
seDau{x)

seD u(x)

o

Dau(x) =0, (x)Df(x), D u(x)=0,(x)Dg(x)

It can be shown that the set Dxu(x) is the subdifferential and D *u(x) is the superdifferential of the
function u of (5.5) at x in the sense of Dem’yanov [20], i.e.

u(x+h)—ia(x) = u(OI(h) = lim8 ™ (u(x+8h)~u(x))= max (s,h)+ min (s,h)
80 seDuulx) seD u(x)

5.10
c=(cl, ) ( )
¢ = (u(x+Ay,e;)-u(x - Ay;e))2Ay)™", =l

max H{t,x,s)2 min H(i,x,s)
seDf(x) seDg(x)
Remark 11. The operator E is defined by the equalities
E=u(x)+AH(t,x,c), f{x)=g(x)=u(x) (5.11)
E=u(x)+A max H(tx,s), f(x)=u(x)<g(x
seDu(x) s 8(x) (5.12)
E=u(x)+A min H(,x,5), f(x)<u(x)=g(x) (5.13)

seDu(x)
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Formulae (5.12) and (5.13) may be interpreted as a Godunov operator or as Hopf’s formula in the
Riemann problem for a convex and concave boundary function [5, 9, 11, 12].

Remark 12. Let us write {5.9) in the form

E=u(x)+A(0,(x) max H(t,x,5)+0,(x) min H(tx,s5))=
seDf(x) seDg(x)

=u(x)-Pu(x)- f(x))+A max H(t,x,s) (5.14)
seDf (x)

- A(M -m)

g~ f(x)

M= max H(,x,5), m= min H(t,x,s)
seDf(x) seDg(x)

0<B<s!

Taking (5.14) into account, we can write the operator E as the operator F on the set S, =co{x+BAye,
i=1,...,n}
Sp =co{x£PAye;, i=1,...,n}

E = E(t,A,S,u)(x) = F(t,A,55,u)(x) (3.15)

On the other hand, E may be written in the form
E(t,A,S,u)(x)y=u(x)+B(g(x)-u(x))+A min H(t,x,5)=G(1,A,55,u)x) (5.16)
seDg(x)

We see from (5.15) and (5.16) that the operators Fand G are identical on the set ;. This indicates that
the operator (5.9) yields the exact (or nearly exact) value of the solution (the utility function) at the point
x for a problem with simple Hamiltonian (simple motion) and positively homogeneous (not necessarily
convex or concave) payoff function. This problem is known in the theory of first-order partial differential
equations as the Riemann problem [11].

6. COMPARISON OF APPROXIMATION OPERATORS

We shall now demonstrate the relationship between the operators F (5.6), G (5.7), E (5.9) and
approximation operators known from the theory of partial differential equations, such as the Godunov
and Lax-Friedrichs operators.

The formula for the Lax-Friedrichs approximation operator may be written as follows [10, 12]:

LF(t,A,u)(x) = [l - i a,-)u(x)+y2 i o (u(x + Aye; )+ u(x — Ayie;)) + AH(1,x,¢) (6.1)
i=1 i=1

(where the vector c is defined by (5.10)).
The operators F, G and LF, with o, =2/(2n+1) (i=1, ...,n) and y> nK, satisfy the inequalities

F(t,A,u)(x)SLF(t,A,u)(x) S G(t,A,u)x), x€ D:

If fix) = g(x), then
F(t,A,u)(x)=LF(t,A,u)(x) = G(t,A,u)(x) = E(t,A,u)(x)

Now consider Godunov’s approximation operator {5, 12]

GOD(t, A u)(x)=u(x)+A ext ext H(t,x,51,...,5)
‘ sel(si.st)  seel(sy.st) " (62)

s:l = (u(x +'A‘Y,-e,~ ) - u(x))(AYI )-I
s; = —(u(x - Ay;e;)—u(x))AY; !
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I{a,b)={min(a,b), max(a,b)]

minb, ash
- J08sg

ext =

sel{a.b) b?_ga’ a>b

The operators F, G and GOD satisfy the relations

F(t,Au)(x) S GOD(1,A,u)(x) S G(t,A,u)(x), xeD,
F(,A,u)(x)= E(t,A,u) =GOD(t,Au)x), f(x)=u(x)

G, A,u)(x)= E(t,Au)(x) =GOD(1, A,u)(x), g(x)=u(x)

The work reported in this paper was carried out with the financial support of the Russian
Fund for Fundamental Research (93-011-16032).
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