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A grid algorithm is proposed for constructing the optimal guaranteed result function (which need not 

be differentiable) in control problems. Wherever it is differentiable, this function satisfies the Isaacs- 

Bellman equation, which is a fist-order partial differential equation of Hamilton-Jacobi type. A 

convergent finite-difference method is proposed for Hamilton-Jacobi equations. Unlike the classical 

grid method, in which one approximates the gradients of the unknown function, which need not 

necessarily exist, this method requires the computation of subdifferentials of locally convex hulls. 

Underlying the method is the concept of a generalized minimax (viscosity) solution (l-41 of the 

Hamilton-Jacobi equation, with the corresponding infinitesimal constructions-directional differen- 

tials and s&differentials-replacing the classical derivative. 

Generalized solutions of Hamilton-Jacobi equations and their numerical computation 
attracted considerable attention at the beginning of the 1960s [5-lo]. When a general theory of 
generalized solutions emerged in the early 1980s [l-4], attention again turned to numerical 
methods. Various approximation operators (AOs) were examined [4,11-151 within the context 
of the theory of viscosity solutions [3]. Various workers have proposed a general scheme for 
proving the convergence of approximation schemes (ASS) and for obtaining convergence 
estimates [4, 131. Explicit schemes with AOs of the Lax-Friedrichs type have also been 
considered [4], and an implicit AS has been investigated in detail [13]. Another topic 
investigated is “essentially non-oscillatory” ASS with operators of Godunov and Lax- 
Friedrichs type, using local approximations of higher than first order (where the latter 
corresponds to piecewise linear approximation) [12]. In the context of Godunov’s scheme, 
consideration has been given to “maxmin” and “minmax” operators, and cases have been 
discovered in which these relations yield an exact formula for the viscosity solution of the 
Riemann problem. 

The AOs proposed in this paper differ from the algorithms mentioned. Obtained in the 
theory of optimal guaranteed control (differential games) developed by Krasovskii and his 
school, these operators are based on the results of [14-191. Underlying the operators are 
notions from convex and non-smooth analysis [20-223: locally convex hulls of the function 
being approximated and subdifferentials of such hulls. The AOs may also be obtained by 
double constructions in terms of subdifferentials of locally concave hulls. These notions are 
connected in a natural relation to Dem’yanov’s subdifferentials and superdifferentials [20], 
which may be used to obtain a universal AO. 

It will be shown below that our AOs satisfy certain sufficient conditions [13] for the 
convergence of the corresponding ASS. However, they differ from the operators of [4, 11-131 
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in one fundamental respect: they may be defined outside the elementary “rhombus” of phase 
space. Therefore, they do not rigidly connect the time-approximation steps with the 
approximation steps in phase space. In what follows we shall also compare our AOs with those 
of [4,11-131. 

1. THE OPTIMAL GUARANTEED RESULT FUNCTION 

We consider a control system whose dynamics over a time interval T = [t,,, 191 is described by 
a vector differential equation 

i=f(t,x,u,U)=h(t,X)+B(t,X)U+C(t,X)U 

ALR”, UEPCR*, VEQCR’ 

(l-1) 

where x is the n-dimensional phase vector of the system, u is the control and u is the noise 
vector. The sets P and Q are convex and compact. The function flf, X, u, u) on the right-hand 
side of system (1.1) is assumed to satisfy the following conditions. 

fl) Joint continuity in all variables. 
(f2) The Lipschitz condition with respect to the variable x 

Ilf(r,x,,u,u)-f(t,x,,u,u)llSL,(D)llx, -x,ll 

forall(t, X&ED, (t,x,)~D, UEP, UEQ. 
(f3) Continuability of solutions: a constant K > 0 exists such that 

Ilf(t,x,u,u)llS K(l+llXll) 

forall(t,x,u, u)~TxR”xpxQ. 
of4) The Lips&&z condition with respect to the variable t 

llf(t~,x.u~u)-f(tz,x,u.u)llS ~((D)llf, -t*ll 

for all (tl, x) E D, (f2, x) E D, u E P, 2) E Q, where D is a compact set, D c T x R”. 

The control problem considered here is to guarantee minimization of the functional 

y((x(m)) = o(xt*)) (1.2) 

on the trajectories x(.) of system (l.l), i.e. to find a positional control U” = U”(t, x) that will 
provide an external minimum in the relation 

w(z.,x.) = tnin max 0(x(*)) (1.3) 
u X(*)EXh ,.a m 

and accordingly to determine the number w(k, x*), called the optimal guaranteed result. Here 
x(t,, x*, u) is the set of trajectories of system (1.1) that leave the initial position (t*, x*) and 
correspond to the positional control U = U(t, x) [15]. 

lt is assumed that the function CT : R” + R in the functional (1.2) is Lipschitz WnthUOUS 

10(x,)-o(x*)lS ~W)llx, -41 

for all x1 E 0, x2 E D, where D is a compact set DC R”. 
The function that assigns to each position (t*, x*) ET x R” an optimal guaranteed result 
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w(t*, x*) is called the optimal guaranteed result function or utility function. 
It is well known that the utility function w(t, x) is Lipschitz continuous and is consequently 

differentiable almost everywhere; at its points of d~ferentiab~i~ it satisfies the Isaacs-Bellman 
equation, which is a Hamilton-Jacobi type equation 

(1.4) 

It also satisfies the boundary condition 

w($ x) = o(x) (1.9 

where 

H(t,x,s) = (s,h(t,x)) + ~n{~,~(f,x)~) + max(s, C(t,x)u) (1.6) 
UEP =P 

is the Hamiltonian of the control system (1.1). 
Solutions of problem (1.4), (1.5) have been rigorously defined, and existence and uniqueness 

theorems have been proved in the theory of minimax (viscosity) solutions of Hamilton-Jacobi 
equations [l-4,16]. One of these definitions [16] follows. 

~e~~~f~o~ 1. A Lipschitz continuous function w (t, x) is called a minimax solution of problem 
(1.4), (1.5) if the following inequalities hold for all (t, x) E [t,, 29) xR” 

inf sup((s,h)-i3_w(f,x)l(l,h)-H(t,x,s))>O 
seR” h=R” 

SUP inf ((~,~)-a+w(~,x~(l,~)- H(t,x,s))% 0 
seRn hER= 

(1.7) 

(l-8) 

as well as the boundary condition ~(6, x) = o(x), x E R”. Here we have used the notation 

for the lower and upper derivatives, respectively, of w at the point (t, x) in the direction (1, h). 
At points where the function is differentiable, inequalities (1.7) and (1.8) become the 

Hamilton-Jacobi equation (1.4), so they may be regarded as a generalization of that equation. 
The finite-difference scheme proposed below for the Hamilton-Jacobi equation is convergent 
and the limit is the utility function, i.e. a function satisfying inequalities (1.7) and (1.8). 

Equation (1.4) will be considered in a certain compact domain G, c T x R”, r > 0, defined as 
follows. 

Let X(f*, x*) be the set of all solutions n(t) of the differential inclusion 

i(t) E F(t, x(t)), t E Et.9 e1, xtt* I= x* (1.9) 

where F( T, y) = co{f E R” : f = f(z, y, u , II), u E P, v E Q}, (z, y) E T x R” is the convex bull of the 
right-hand side of system (1.1). 

Let G be a closed set satisfying the following strong invariance condition 

(Gl) If (E*, x*) E G, then (r, x(r)) E G for all x(t) E X(t*, x*), t E [b*, 61. 

By condition ($3) compact domains G exist satisfying this condition. 
Let 
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K= max llf(t,x,u,u)ll 
(t.x.u,ukGxPxQ 

be the maximum velocity of system (1.1) in region G. 
Obviously 

KS max K(I+llnll) 
V,xW 

Suppose the number I defining the domain G, is such that r > K. Note that for any (t, X) E G 
we have fit, X) c B, (B, denotes the sphere {b E R" : II b Ik r)). 

We will define G, by two conditions: 

(G2) G, cG. 
(G3) If (t*, x*) E G,, then (t, x*+(t -t*)B,) c G, for all t E (t*, IY]. 

It follows from conditions (fl)-(f4) and relation (1.6) that the Hamiltonian H (r, X, s) : 
G, x R" + R satisfies the following conditions: 

(Hl) Uniform continuity jointly in all variables. 
(H2) The Lipschitz condition with respect to the variable x 

IH(t,x,,s)-H(t,x~,s)l~~(G,)Ilsll Ilx, -x,ll 

forall(t, x,)EG,,(~, x,)EG,, SER". 
(H3) The Lips&k condition with respect to the variable s 

IH(t,x,s,)- H(f,X,S1)IS Klls, -s,ll< rlls, -s,ll 

for all (r, x)EG,, s, ER”, s, E R". 
(H4) The Lipschitz condition with respect to the variable t 

~H(t,,x,s)- H(r,,x,s)l~ L,(G,)Ml llf, -$11 

for all (tl, x)EG,, (tz, x)eG,, SER”. 
(H5) Positive homogeneity with respect to the variable s 

H(t, X, hr) = hH(t, X, s) for all (c, X, s) E G, x R", ha0. 

2. APPROXIMATION OPERATOR FOR HAMILTON-JACOBI EQUATIONS 

Let t ET, t + A E T, t < 6, A > 0, (t, X) E G,. Let us assume that at a time t + A a function u (.) 
is required which satisfies a Lipschitz condition in the domain D,,, = {x E R” : (t + A, X) E G,, 
t + A E T) with constant L = L(I),+,). This function will be used in the subsequent constructions 
as an approximation of the solution w(t+A, .). We define an operator u + F(r, A, u) 
approximating the Hamilton-Jacobi equation in the neighbourhood of a point (t, X) E G, by a 
formula that can be interpreted as a generalization of Hopf’s formula [9, 111 or of the 
programmed maximin formula [15,17] to locally convex hulls 

u(x) = F(t,A,u)(x) = f(x)+ sup max ILW(t,x, s) + f(y) - f(x) - (s, Y - x)1 (2.1) 
yeG(x,rA)sd?f(~) 

Here the function u: 0, -_) R is treated as an approximation of the solution w(t, .) in the 
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domain D, = (s E R” : (t, x) E G,, t E T}, 
The set 0(x, rA) is a neighbourhood of x of radius rA, r > K, A > 0, (t, x) E G,, i.e. 

0(x, rA) = fy E RB: by -XII< rA) 

the function fi)z_8(x, rA) + R is the locally convex hull of the function u(y) in the closed 
neighbourhood 0(x, rA) of x of radius rA 

7i(x,rA)=fy~R”: lty-xlfl;rA) 

The set Dfcv) is the subdifferential [21,22] of the convex function fat a pointy, ys 0(x, rA) 

Note that in formula (2.1) 

f(rP-fW-~~,y-~)SO, yeO@,rA). s~Qf(y) 

We now consider the properties of locally convex hulls and su~iffere~~als*~ 

Lortma 1. 
1. The function f: 5(x, rA) + R satisfies the following limit 

for all 2: E D(x, rA), y E 0(x, rA). In particular, when y = x the following inequality is true 

for all z E~(x, $A). 
2. Tbe function f: G(x, KA)+ R, K<r satisfies 

L(l+(r+K)l(r-K)). 
3. For any subgradient s E Dfcv), y E 0(x, rA) 

the Lipschitz condition with constant 

In particular 

TFor the proofs of all these assertions, see TARAS’YEV A. M., Approximation schemes for constructing solutions of 
tbe basic equation of the theory of control and differential games. Ekateringburg, 1992. Deposited at VINITI 31.07.92, 
No. 2543”B92. 
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y E 6< x, KA) 

The following example shows that the condition r > K is-essential. &et u =u(y) =u(yI, 
y,)=-ly,l, y=(y,, yz)eR2, x=(0, 0), A=l, r=K=l, i.e. 0(x, rA)=O(x, KA)={~ER~: 
(y: + ~z)l’~ c I}. Clearly, f(y) = -(l-y:)“‘, and so af /ay, = y,(l- y$“‘. The partial derivative 
i3f /& increases without limit in absolute value as I y, I-+ 1. C_onsequently, the function f(y) = 
-(l- yt)“’ is not Lipschitz continuous in the neighbourhood 0(x, KA). 

Lemma 2. Suppose 
and moreover 

that the function &y): g(x, rA) + R is convex and Lipschitz continuous, 

c(Y) > ~(Yo ), Y E 5(x, KA) \ (Yd, Yo E aax, KA) 

ila(x,KA)={y&(~,KA): lly-XII= KA}, r> K 

Then a sequence (y,,,), y,,, E 0(x, KA), lint,,,,_ y,,, = y,,, a s_quence (I,,,], 1, E Ds(y,,,) and a vector 
&, l D&Y,) c R”, lim,,,, m 1 = 4 exist such that for all y E 0(x, KA) 

5(Y)-5(Yo)2(lo,Y-Y0)20 

Using Lemmas 1 and 2, one can prove the following properties of the operator F. 

Property 1. The value II(X)= F(t, A, u)(x) is well defined for all functions u: R” + R which 
satisfy the Lipschitz condition, where (t, x) E G,, t E T, A >O, t + A E T. One then has the 
following limits 

yp$~~A)uo)) - 2LKA S FU,A,u)(x) S yE)yjm)u(~) 

Property 2. The operator F satisfies the following equalities 

F(t,A,u)(x)=f(x)+ sup max (AWr,x,s)+f(y)-f(x)-(s,y-x)}= 
yeO(vA)seDf(y) 

= f(x) + sup ma {~(r,x,s)+f(y)-f(x)-(s,y-x)}= 
y~O(xJWseDf(y) 

=f(x)+ max max M(t,x,s) +f(y) - f(x) - by - 41 
yrirwuseDf(y) 

Thus the supremum in the operator F_over the set 0(x, rA) is the same as over the set 0(x, 
KA), r > K, and is achieved on the set 0(x, KA). 

3. PROPERTIES OF THE OPERATOR F AND GENERAL CONDITIONS FOR 
THE CONVERGENCE OF APPROXIMATION SCHEMES FOR 

HAMILTON-JACOBI EQUATIONS 

We will now consider some properties of the operator. F defined by formula (2.1), which may 
be related to the sufficient conditions of [4,13] for the convergence of ASS. The operator F 
satisfies the series of sufficient conditions presented there. Therefore the explicit AS with the 
finite-difference operator (2.1) converges, with a convergence error estimate of the order of 

112 A . 
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Theorem 1. The operator u-_) F(t, A, u) defined by formula (2.1) satisfies the following 
conditions. 

(H) For all x E 0, 

F(t, 0, u)(x) = u(x) 

(Z?Z) The mapping (t, A) + F(t, A, u) is continuous. In fact 

IF(t,,A,,u)(x)-F(t,,A.,,u)(x)lS2L(r+K)IAl -A,I+ 

KIA, -A,I+~(G,)max{A,,A2)lt, -$I) 

(F3) For all points x E 0, and numbers a E R 

F(t,A,u+a)(x)= F(t,A,u)(x)+a 

(F4) A constant C, 20 exists such that, for all points x E 0, 

IF(t,A,u)(x)-u(x)lSC, 

where we may put C, = (r + 2K)LA. 
(fi) If 24(x)rz+(x) for all XE D,+d, then F(;(t, A, u&x)?= F(t, A, z+)(x) for all x E 0,. 
(F6) A constant C, 3 0 exists such that 

IlF(t, A,u)llDt 5 exp(C2A)(llullDl+d +C*A) 

By condition (H5) we can put C, = 0. 
(FI) A constant C, exists such that for aII x1 E D,, x, E 0, 

lF(t,A,u)(x,)-F(t,A,u)(xz)lIexp(C,A)tllx, -x,il 

(R3) A parameter C, exists such that for all twice differentiable functions cp: D,,, + R and 
points x E 0, c D,+A 

I WA, cp)(x) - cp(x) - H(t,x,Y’cp)(x) 

(Cd =[r2~2Kr(2+~i)lE12@l] 

I C,A 

where V&z) is the gradient of cp at a point x E 0, and II&p II is the norm of the second 
derivative of cp, i.e. 
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i, j = 1, s..f n 

The next assertion follows from Theorem 1 and the results of [4,13], where it was pruved 
that an AS with an operator satisfying coftditions (M)-(I%) is convergent. 

Theorem 2, Let w be a generalized solution of problem (1.4), (1.5) in the domain G,, For a 
partition T=frOct,< . n . ct, = 0) of the interval T with constant mesh size A = fi+, -ti 
(i=O,..., N-l), define an AS with the operator F of (2.1) 

ur(6, X) = cc(x), x f De 

Ur(t*X)= F(‘Vri+r -tlut”(ri+r901XK) (3.1) 
r~[$,$+,), xcDt, i=O ,..., N-l 

Then the AS (3.1) converges to a generalized solution w of problem (1.4), (1.5). Moreover, a 
constant C exists such that, for suf~c~ent~~ smafI A, 

(3.2) 

4. AN APPROXIMATION OPERATOR ON A GRID 

Let us consider the possibility of appro~mating the operator F(t, A, u) by an operator P(t, 
A, u) whose value is a p~e~ew~se-linear function, the vertices of whose graph tie at the points uf 
a fixed grid. 

Let (r, ~~) E G,, ,~i = YiA > 0 (i= 1, . ) . , n). The set of points {y = x0 + c(qQI + I . 1 +m,,h,e,)J 
such that (T, y) E G,(m, = 0, +l, 22, m . . , i = 1, . . . , n) is called a grid; we shall denote it by 
GR(r), Here e, (i = 1, I . . , n) are basis vectors in R”. Let q be the convex hull of the grid 
GR(@ 

D~={~EP: Y= i OEjYjt YjEGR(+tj, txj;?O, j=O,...,n, i aj=I) 
j=O j=O 

We shall assume that t ET, t + A E T and U: Q,$ -+ R is a function which satisfies the Lipschitz 
cond&on. Let sf be some fixed partition of the n-cube into simplexes. 

Define the value of the operator F* (8, A, u>(y): I>: -_) R at a point y E @ bv 

The ~effi~en~ a, = ar(sz) and points yj = yj~~~ (j= 0, . . . 3 n), both here and below, are 
uniquely defined by the partition Q. 

Theorem 3. The operator F(t, A, u) satisfies conditions (Fl)-(F8) with parameters 

c; =(X-t2R+&max{yj))U, c; =c+J -0 
1 
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C,’ = C, +(~~~{y,Z)+J;;Km~{ji})tl~2~ll+~~(G,)m~(Yi}tlV~ll 
i i i 

Theorem 4. Let w be a generalized solution of problem (1.4), (1.5) in the domain G,. For 
a partition r = {f, <t, < . . . <t, = 191 of the interval T with constant mesh size A = ri+t -ri 
(i=O,..., N-l), define an AS with operator F* 

u;(*,Y)=o*(Y)= i ajo( .Y~D:* Y= i ajYj 
j=O j=O 

~ aj =I, aj =aj<n)lO, Yj =Yj(S1)EGR(6), j=O,...,11 
j=O 

u;w=F*(t,fj+~ -t, U;(fj+,P))(X) (4.1) 

t ~[q,f~+,), XED:, i=O ,..., N-l 

Then the AS (4.1) converges to a generalized solution w of problem (1.4), (1.5). Moreover, a 
constant C* exists such that, for sufficiently small A 

where 

Ilu; - wllG, 5 C*Ag 
r 

uu; -who. = mu: I&,x)- w(t,x)l 
I (LX)& 

G;={(t,x)EG,: tcT, XED;] 

C*=2((C,*)2+2~L,+(~)‘)+(~(G,)+~(G,))(l+~)(1+2(6-t,)L)+ 

+2(6-t,)C~(1+18~)+6(~-t0)~ 

L,, =&(D+). &,, =L,exp(L,(C,)(*-to)) 

C,* I(r+2K)L, L= Laexp(C;(b-to)) 

j? = R+ 1, R =Iloll~~ +C;(S-to), Hall . = ma$o(x)l 
“4 xeD4 

(4.2) 

5. ALGORITHMS FOR COMPUTING VALUES OF THE OPERATOR F 

Different types of operators. We will point out some further properties of the operator F. We 
first introduce some notation. Let 

F(t,A,q,u)(x)=f(q,x)+ _max max {AH(t,x,s)+ 
~~O(xXA)seQf(q.y) 

+f(~,y)-f(r;:,x)-is,y-x)}. i=l,2 

F(t. A, S, u)(x) = f( S, x) .I- _max m= (~(r,x,s)+f(S,~)-f(S,x)-(s,y-~)} 
ye0kKA)seQOS.y) 

where rz > r, > K, the set S = S(x, r,, r,, A) is a convex polyhedron such that 

and the functions f(r;, .) andf(S, .) are the convex hulls of u(e) over the sets p(x, r;A) (i = 1, 2) 
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andS@, r,, r,, A), respectively. 

Properfy 3. 

Remark 1. By property 3, ASS (3.1) and (4.1) with an operator F = F(t, A, S, u) are convergent, since 
that is the case for ASS (3.1) and (4.1) with operators F = F(t, A, ri* u) (i = 1, 2). The convergence error 
estimate is of the order of Ai@. 

A special feature of this approximation operator F is the appearance in formula (2.1) of a 
mathematical programming problem, If the function f in (2.1) is piecewise-linear and the 
Hamiltonian H(t, X, s) is piecewise-linear and positively homogeneous as a function of the 
impulse variable S, the mathematical p~o~a~ng problem may be reduced to the solution of 
a series of &near progr~ng problems. 

Indeed, suppose that u is piecewise-linear. Then the convex hull f(,)= f(+S, .) of tl over the convex 
polyhedron S(x, r,, r,, A) is also piecewise-linear. In particular, in the neighbourhood 0(x, KA) we can 
write f as; 

where the points y, and the vectors Zl, satisfy the following condition: an i, eJ(y), exists such that for 
all i 8s J(y) 

co L(y, i) s co Lt Y, & ), Y E W, KA) 

J{(y)=@ ~~~~~(~~,Y-Y~)+ffYi))=~~~(I~~,Y-Yi)+f(Yi~~~ 

L(y,i)=(l=Ii: _((Z~,y-y~)+f(yj))z(~~,Y-Yj)+f(Yi))l iEJ(Y) 
n 

The ~~~e~ntial DAY) offat y E 0(x, KA) is defined by 

If the relation i ,=iO(yi)=j holdsatthepoints yj, j=l, . ..) N,, then the subdifferential D~(JII ) of fat 
the point yt E C(X, KA) is the convex polyhedron de%ed by the formula 

tff(yj)T~~~~, n=l,**.,Njf* i=1,**.*NB. 

We may assume without loss of generality that the Hamiltonian EZ( t, x, s) is piecewise-linear and 
positively homogeneous as a function of 8. In particular, H(t, x, s ) will satisfy these conditions if the 
control system is linear in the control variables and the constraints on the controls are polyhedra. In that 
case 

H(t,x,s)= {s,h(t,x))+~~~s*8(1,X)U)+~(S,C(r,X)U) 

where P and Q are convex polyhedra. 
I.et uk be the vertices of tie poIyhedron B(t, x)P aud let L: be the cones of linearity of the functicn 

s +miu&s, B(t, x)u), Le. 

t; =L;(t,X)=(SER”: (s,u-q);rO, uEB(c,x)P], k=l,...,N, 

S~arly, iet u, be the vertices of the polyhedron Cft, x)(2 and Lk the cones of linearity of the 
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function s -+ maxua(s, C(t, x)u>, i.e. 
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L: =L;(t,x)={s~R”: (s,u--u,)<O, u~C(i,x)Q}, m=I,.+.,N,, 

Property 4. If u is piecewise-linear and the Hamiltonian H is piecewise-linear and positively 
homogeneous as a function of s, then F may be computed from the formula 

f; = F(r,A,~,~){~) = f(x)+ max~~~maxmax(A((s,h(r,x)) +(s,4)+ 
i m S 

+(S,Z)n())+f(Yj)-f(x)-(s,Yj-s)) (5.1) 

SE Lj,k,m(f,*)=-;f~Yj)nL~ nLz 

In this formula the set &Jr, x) is a convex polyhedron, while the function being rn~i~ed 
is linear in s. Thus, calculation of the value F(f, A, u)(x) of the operator F at a point n reduces 
to a series of linear programming problems. 

Remark 2. Consider the finite-difference operator G dual to the F of (2.1) 

G(~,A,~)(x~=g(x)~ inf r@n t~(r,n,sf+g(y)-g(x)-(s,y-x)} (5.2) 

BET, r+AcT, t<4, AL\>, (~,x)EG,., r>K 

where g(y): ??( X, rA)+R is the locally concave hull of 
rA) of x of radius rA 

u(y) in the closed neighbourhood F((x, 

n+i 
g(Y)=SUP c ‘+@(J’k): yk E&n,rA), U, 20, k=I,...,n+l 

k=l 

n*I II+1 

c akyk =y, x ak=l , yfO(x,rA) 
k=l k=l I - 

and the set E&J) is the superdifferential of the concave function g at a pointy, y E 0(x, rA) 

6g(y)=Is~R”: g(z)-g(y)S(s,z-y), zE~(x,rAN 

Remark 3. ft can be shown that G satisfies conditions (El)-(F8). frequently, the AS (3.1) and (4.1) 
with operator G is convergent, with convergence error estimate of the order of Aif*. 

Remark 4. The operator G possesses properties 14. 

Remark 5. The following inequality holds 

G(r,A,u)(~) 2 ~(r,A,~~(x), x E D@ 

Remark 6. Let C%,(X), (x2(x) be such that oli(x) 2 (0) (i = 1, 2) and a,(x)+a,(x) = 1. Then the operator 

satisfies the inequalities 

F(r,A,u)(x) 5 E(t,A,u)(x) < G(t,A,u)(r), XE 0, (5.3) 

The AS (3.1) and (4.1) with the operator E converges, with error estimate of the order of Ai’2, for any 
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(not necessarily continuous) weighting functions x -_j cc,(x), x -_) u*(x). 

Remark 7. Let y, be numbers such that 

-K 
, i = l,...,n 

(in particular, if y, = y (i = 1, . . .,n) thismeans that Kd(n<y)). Define 

-yz 
, r*=llUXyi. i=l,..., n 

i 

S(X,rl,r*,A)=co(XfL\‘yiei, i=l,....n) 

U(Y)= 2 aju(yj), y~S(x.q.r2.A) 
j-0 

~0 =x, yi =xfA*liei, i=l,...,n 

(5.4) 

(W 

aj20, j=O ,..., n, i; Ctj=l, Y= $ UjYj 
j=O j=O 

The functionfis then piecewise-linear and defined in the elementary “rhombus” S= S(x, rr, r,, A) by 
the relations 

f(X*Ayiei)=U(XfA~iei), i=l,...,n 

f(X)=mhl(U(X), min(f/2(v(x+A~~ei)+U(X-A~iCi)))) 
i 

f(y)= i ajftyj), ~oS(X99~r2.A) 
j=O 

yo =x, yi = XfA7iei, i = l,...,n 

Uj 20. j=O,....fl. i Uj= 1, Y= iajYj 
j=o j=O 

The subdifferential of(x) off at the point x is a rectangular parallelepiped with faces parallel to the 
coordinate axes 

Df(x)=co(ac: k = 1,..,,2”) 

ak = (ai,...,a;) 

af =*(f(XfA~iei)-f(X))(Ayi)-‘, i=l,...,n 

The operator F is computed by the formula 

F = F(t, A&~(X) = f(x)+A max H(r,x,s) = 
Sof(X) 

=l(x)+Am~~maxmax((s,k(~,x))+(~,~~)+(~,u,)) 
In s 

(5 4 

Remark 8. Assume that condition (54) holds. Then 
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G = G(r,A,S,u)(x) = &)+A @in H(t,x,s) = 
SCWX) 

= y(x)+Am~~m~((s,A(t.~))+(s,~~)+(s,u,i) (5.7) 

sELk,m(l,x)=bS(x)nL~nL~, L; =L’;(t,x), L; =L;(r,x) 

&(x) = co&: k = L.2”) 

bk = (b;,...,bk”) 

6~ =f(gfxfAy~~i)-g(x))(Ayi)-‘, i=l,...,n 

Remark 9. Assume that condition (5.4) holds and let f(x) < g(w) in (5.6), (5.7). Define 

a, (x) = l?(x) -4x) a (n) _ 4x1 -f(x) 

m-m * - g(n)-f(x) 

In that case 

E = E(t,A,S,u)(x) = aI (x)F(t,A,S,u)(x)+az (x)G(t,A,S,u)(x) = 

=u(x)+A(al(x) max H(r,x,s)+a2(x) @in H(r,x,s))= 

WJ 

(5.9) 

It can be shown that the set D*u(x) is the subdifferential and D *u(x) is the superdifferential of the 
function 1c of (5.5) at x in the sense of Dem’yanov [ZO], i.e. 

u(x+h)-~(x)=au(x)l(h)=~~~6-‘(u(x+Sh)-u(x))= max (s,h)t mjn (s,h) 
seDeu(x) saD u(x) 

Remurk 10. The following relations are satisfied 

Df(x)n E&r) f 0, c E Df(x)n i&(x) 

c=(c’ ,..J) 

ci =(U(X+Ayi~i)-Ic(n-Ayie~))(ZAy~)-’, i=l,..,,n 

max H(t,x,S);?: min H(r,x,s) 
S@(X) SE&?(X) 

Remark 11. The operator E is defined by the equalities 

E = u(x) -I- AW,x,c), f(x) = g(x) = u(x) 

E = u(x)+ Aa=, Hkx,s). f(x) = u(x) c g(x) 

E = a(x)+ASEt$i~x) H(r,x,s), ft.@ < U(X) = g(x) 

(5.10) 

(5.11) 

(5.12) 

(5.13) 
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Formulae (5.12) and (5.13) may be interpreted as a Godunov operator or as Hopf’s formula in the 
Riemann problem for a convex and concave boundary function [S, 9,11,12]. 

Remark 12. Let us write (5.9) in the form 

E= u(~)+A(a,(x)~~~~~~,~(~,x,~)+a,(~)~~~~~~)~(~.~.~)) = 

=u(x)--(U(X)-f(x))+A max H(t,x,s) 
=Df(x) 

(5.14) 

p= Wf-ml 
g(x)-f(x)’ OSB4’ 

M= max H(t.x,s), m= min H(t.x.s) 
seDf(x) sdTg(x) 

Taking (5.14) into account, we can write the operator E as the operator F on the set SD = co(xf pAy,e,, 

i=l, . . ..n} 
Se =co(xfPAyiei, i=l,...,nj 

E = E(t,A,S,u)(x) = F(t.A+u)(x) 

On the other hand, E may be written in the form 

(5.15) 

(5.16) 

We see from (5.15) and (5.16) that the operators F and G are identical on the set Se. This indicates that 

the operator (5.9) yields the exact (or nearly exact) value of the solution (the utility function) at the point 
x for a problem with simple Hamiltonian (simple motion) and positively homogeneous (not necessarily 

convex or concave) payoff function. This problem is known in the theory of first-order partial differential 
equations as the Riemann problem [ll]. 

6. COMPARISON OF APPROXIMATION OPERATORS 

We shall now demonstrate the relationship between the operators F (5.6), G (5.7), E (5.9) and 
approximation operators known from the theory of partial differential equations, such as the Godunov 

and Lax-Friedrichs operators. 
The formula for the Lax-Friedrichs approximation operator may be written as follows [lo, 121: 

LF(t,A.u)(x) = u(X)+% i ai(u(x+A~,~i)+u(x-Ay,~i))+~(r,x.c) 
i=l 

(where the vector c is defined by (5.10)). 
The operators F, G and LF, with oli =2/(2n+l) (i = 1, . . . , n) and y > nK, satisfy the inequalities 

F(r,A,u)(x)~LF(r,A,u)(x)4G(r,A,u)(x), xeD: 

If fix) = g(x). then 

F(r,A.u)(x) = LFYr.A.u)(x) = G(r,A,u)(x) = E(r.A,u)(x) 

Now consider Godunov’s approximation operator [S, 121 

GOD(r.A,u)(x)=u(x)+A ext . . . ext 
slEf(Si.Sf) S&D;.S;) 

H(r.x,+....s,) 

~~7 =(~(x~A~‘yiei)-~(~))(A7i)-’ 

s; = -(u(x-A~iei)-u(x))(A~i)-’ 

(6.1) 

(6.2) 
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The operators F, G and GOD satisfy the relations 

FCt,A,u)f~)~COD(t,A,u)fx)~G(t,A,u)fx), welt; 

FO,A,rc)(x) = E(r,A,u) = GOD(r,A,u)(x), f(x) = u(x) 

G~t,A,uHx) = E(f,A,u)lx) = GOJN,A,v)(x), g(x) = u(x) 
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